
1

Flexibility and Scalability in Access Control
Systems

Technical University of Denmark
Alex Pellegrini - s132199

Abstract—This paper describes two of the most used access
control systems i.e. Identity Based Access Control (IBAC)
and Role Based Access Control (RBAC). This is going through
an analysis with respect to the flexibility and scalability of the
mentioned systems.

I. INTRODUCTION

Access control has always been considered one of the
most important aspects of security. In computer science this
means that system needs to manage interactions between
authenticated users and static resurces such as files, directo-
ries and devices. This process is also called authorization.
Access control systems are used to check whether a user is
allowed (authorized) to access a resources and, if so, what
kind of operations the user can perform on it. Usually they
are often policy-based systems. Once an user has been
authenticated and mapped with the right attributes, roles or
identity assurance, each time an object is requested, or some
actions are requested on it, the policy is evaluated and the
permission is then granted or denied. This paper describes
how access control policies are enforced in Identity-based
(Discretionary) and Role-based access control systems.

II. ACCESS CONTROL POLICY

Control policies are usally a list of rules that the access
control mechanism has to follow in order to know if a
request will have success or not. If a request satiesfies all
the requirements to access a resource we will say that the
permissions, to that request, are granted, otherwise they are
denied. One could see a control policy like a decision tree. As
in a machine learning problem we use a decision tree so as to
classify a new observation over a set of possible classes, here
one could parse a decision tree which only has two classes
which are grant and deny. This has to be done for each
request, obviously supposing that such a request has all the
attributes in order to be classified by the tree.

Figure 1 shows a trivial example of a possible ”policy tree”
used to analyze a request on a resource that can be accessed
with read and write permission by an Admin user and
only with read right for a user of class A:

Fig. 1. A tree representation of a control policy

By parsing the tree we can point out that the following
request will be granted passing all checks :

Request num. User Type Request Type
1 A read

Instead this other request will be denied after the second
check (User : is A?) :

Request num. User Type Request Type
1 B read

III. IDENTITY BASED ACCESS CONTROL SYSTEM

Identity based access control systems (IBAC) are intended
to require an owner for each static resource that can decide
how to distribute permissons to the other users. IBAC comes
with the definition of subject, object and access right. The
subject is meant as an active entity that addresses request
to access some resources, it could be an user a process or
a thread as well. An object is instead a passive entity that
could be accessed by an active entity (subject) through the

2

system. An access right is a map between a subject and
the permissions available on a certain object.
Identity-based access control are widely used as security sys-
tem on operating systems like Unix, Unix-like and Windows
NT.

A. Access Control Matrix

Existing relations between subjects and objects are
gathered together in a rectangular matrix where rows are
indexed by subjects and columns by objects. This means
that each matrix entry M [i, j] will be the access rights that
subject i has on object j. A request addressed by the subject
s on the object o is granted if and only if the type of
the request (e.g. read,write,execute) is contained in
M [s, o] Adopting a method like this will produce a space
usage in the complexity order of O(nm) for a list of subjects
with size n and an list of objects with size m or viceversa.

Obj1 Obj2 Obj3
Sbj1 read read,write ex
Sbj2 write read,write,ex
Sbj3 read read ex

The access control matrix shown above will produce a space
usage of O(9), indipendently if there exist empty entries or
not. This matrix would become a sparse matrix very likely and
this is a problem from the point of view of performance an
maintaning matters and thus is very rarely implemented in real
nowadays systems. Instead other two approches are adopted,
Access Control Lists and Capability Lists.

B. Access Control List

Access control lists (ACLs) are a list of permissions
attached to an object (e.g. a file, directory or device in
the case of operating systems). It is usually stored as a table
which entries are known as access control entries (ACEs).
Each ACE is a pair containing an user identificator and a list
of rights that this user has on the object itself. Figure 2 is
an access control list associated to a common object with 5
ACEs.

Fig. 2. Rough example of an ACL for a generic object

Given an access control matrix each column of
it could be seen as a single access control list. ACL are a

sort of discretionary access control (DAC) which mean that
permissions and rights on resources are restricted and these
restrictions are based on the requesting subject identity. An
owner is also requested for each resource and as the name says
discretionary the owner can decide how to restrict permission
on his files. Figure 4 shows an example of how an access
control list is displayed on an Unix-like system.

Fig. 3. Example of a unix lke ACL (setup.sh)

C. Capability List

Implementation of a capability-based control (i.e. a system
using capability lists) is not that far from the ACL
one. This kind of IBAC is based on the fact that each
subject is associated with a list of capabilities, an entry for
each static resource (object) present on a computer system.
A capability could be see as a key that a subject exhibits when
accessing an object and contains constraints which explain
in which way the access can be accessed and the righs or
operations permitted on it.
A capability list is attached (i.e. associated) to each subject
and contains an entry for each object present in the system.
Given an access control matrix M [i, j] each row of it is
represents a capability list.

Fig. 4. Example of a unix lke ACL (setup.sh)

Lets consider the following python code snippet:

1 fd = open (’ f o o b a r . t x t ’ , ’ rw ’)

this will add a new capability, containing the file descriptor
of foobar.txt and the set of rights [read,write], to the
capability list of the process running the same snippet. In this
case the process plays the role of the subject.
This kind of approach is quite secure, because the file descrip-
tor is also stored into the kernel memory and thus couldn’t be
modified by the subject.

3

IV. ROLE BASED ACCESS CONTROL

A newer access control system is being used more widely
every day to manage this kind of security matters during
the last years. This is the role based access control
which basically does no longer map authorization, or rather
permissions, on authenticated user’s identity but the role(s)
covered by the latter.
A role can be seen as a duty within an organization for
example. Each user can be mapped on ore or more roles based
on its duties and, viceversa, a role can have more users. Each
role can have one or more permissions. Latter basically are a
relation between access rights and objects. Figure 5
gives a graphic representation of the RBAC model.

Fig. 5. Illustration of RBAC model

The RBAC model comes with the definition of a set of
users U , a set of roles R, a set of permissions P , a mapping
between users and roles UA ⊆ U × R and an assignment
relation between roles and permissions PA ⊆ P ×R.
There is also the concept of session that is a mapping
between u, r and p where u ∈ U , r ∈ R and p ∈ P .
The session entity is the reflected subject of the Identity-
based access control. An user may led more than one session
simultaneously each with a subset of the original role set it
comes with originally, and therefore a subset of the original
permission set. An user u request to exercise a permission p
will be granted, in a session s, only if the following holds:

Role(s) ∩Role(p) 6= ∅ (1)

In an RBAC system a user does not receive its premissions
directly but everithing is based on the role it is associated
with. In an enterprise with a large number of employees an
RBAC system would be very useful as adding a new user will
become a matter of associating it with the correct role, and
the same holds when updating user’s permissions is needed.

It is defined to follow three main rules while working:

1) Role Assignment : an user only can perform a transac-
tion if it has been assigned one or more roles.

2) Role Authorization : A role must be authorized for the
same user or session, it is a verification that the user is
actually related to the role itself

3) Permission Authorization : A session is allowed
to perform certain actions only if the permission is
authorized for the session’s active roles (Equation 1).

Fig. 6. Representation of an RBAC system (Wikipedia)

Figure 6 shows a possible implementation of an RBAC
control system in an organization. As one could see there
is also another constraint which is the Role Activation con-
straint. This basically means that during a session two or
more conflicting roles cannot be activated together. This is
also called Separation of Duties (DoS). For example a user
can’t activate the role that allows him to perform a critical
operation and the role to authorize it at the same time.

A. Role Hierarchy

A powerful advantage of this kind of access control system
is that a role hierarchy could be easly applied. A role
hierarchy is some kind of sorting within the set of roles R, or
better it is an anti-simmetric and transitive relation

RH ⊆ R×R (2)

Lets have a role r ∈ R this is a senior role, with respect to
r′ ∈ R if Permissions(r′) ⊆ Permissions(r). r′ is thus a
junior role with respect to r and this relation is usually written
like r′ ≤ r. This means that a subject associated with the
role r is automatically associated also with the role r′.

http://en.wikipedia.org/wiki/File:RBAC.jpg

4

In the following example :

Fig. 7. Organization example

We have a blog system with a role set
admin, author, editor, reader and a permissions set
createPosr, readPost, updatePost, deletePost. In a
system like this an user that is only associated with the
reader role can only read exercise the readPost. If a new
user, which is supposed to be a post author is added, it is
mapped only with the author role. Following the hierarchical
tree from top to the bottom, starting from the author node
one can see that the reader role is automatically associated
to the new user without any supplementary operation. An
role hierarchical structure like this becomes very helpful to
manage new role assignments or adding new subjects to the
system because reduces the amount of operations.

V. FLEXIBILITY AND SCALABILITY ANALYSIS

Suppose we have a big enterprise with a large number of
employees and an access control system is needed in order to
manage all the matters that concerns working on a computer
system. We want to analyze whether it is better to implement
an Identity-based Access Control, such as ACLs based or
Capability List, or a Role-based Access Control system.
We have seen so far that the biggest difference (at first glance)
between the two lies in the fact that in a RBAC system we
have an intermediary entity which is the role.

RBAC = IBAC +ROLES(+RoleHierarchy) (3)

The task would be to map employee permissions on the
systems objects with respect to their job duties and authori-
ties. This could be achieved by implementing an Identity-based
Access Control like the ACL one. This means that for each
employee belonging to the organization we have to create a

list of pairs made by a file descriptor and a set of permissions.
This is quite straightforward to do as what we need to do is:

1) for each user, create an ACL and parse all the system
ojects.

2) if the object has to accessible by the user add a pair to
the ACL with the Object ID and the permissions.

3) Store the ACL into the system.

In the worst case scenario, where there are n users and m
objects, supposing that an ACL entry has constant size and
every user can access any file somehow (the object’s owner
decides this), the implementation will follow a complexity
and space time in the order of O(nm). The same holds if we
have to add a large set of object into the system. The problem
lies in the fact that we have to parse every user’s ACL and
add a new ACE if the object is accessible by the user. The
complexity of such an operation (with a new set of objects
with size n) will be O(n), always supposing that creating a
new ACE takes O(1). Changing an user’s permissions for an
object is a matter of look up for the object into the ACL. In
the case it is a list structure it will take linear time. When an
object is deleted, we have instead to check all the ACLs and
remove every ACE that refers to that object. This is done for
each user in the system.

Lets say that we want to implement the same system
with a Role-based Access Control this time. This means that
we have to preapre the set of roles that system needs, and
realate them with the correct permissions across the system’s
objects. Suppose that we still have m objects in our system,
and a set of roles with cardinality k where k ≤ n and n is
the cardinality of the set of users. To map all the roles to
the related permissions will take complexity O(nm) again
(because of k could grow to n in the worst case).
Moreover a role hierarchy has to be created. This could be
seen as a sorted tree like the one shown in Figure 7. To
create a tree structure that contains k nodes (roles) and e
edges (relationships role-role or role-permissions) takes time
O(k + |E|) where —E— is the cardinality of the edges set.
We know also that |E| ≤ km in the worst case and k ≤ m,
thus:

O(k + |E|) = O(k + km) = O(km) = O(nm) (4)

Putting all together, the final complexity is:

complexity = O(nm) +O(nm) = O(nm) (5)

Which is the same as the IBAC implementation (following our
assumption). Now, if we want to add a large set of users all
what we have to do is to assign one or more roles to each of
without the need of parsing the whole set of objects. The same
holds when an employee is to be moved or its duties change
within the enterprise. We just need to crawl across the ’tree’
to retrieve a permission that takes at most O(h), where h is
the tree’s height (in the case od a binary tree h = log(n)).

5

VI. CONCLUSION

As a conclusion one could say that an Identity-based Access
Control system would be a better choice when the system
purpose is to allow a small number of users, for example on
an operating system of a personal computer.
For a system that has to hold a large number of users with
different authorizations it would be better to adopt a Role-
based Access Control system so as to be able to reduce a lot
the amount of operations needed.

	Introduction
	Access Control Policy
	Identity Based Access Control System
	Access Control Matrix
	Access Control List
	Capability List

	Role Based Access Control
	Role Hierarchy

	Flexibility and Scalability Analysis
	Conclusion

